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The emerging wireless applications have increased the demand of wireless 
spectrum significantly. Present spectrum assignment is static, due to which 
problem of spectrum scarcity has been raised. Cognitive Radio (CR) is a 
promising technology to deal with spectrum scarcity problem, which uses 
dynamic spectrum allocation to utilize the vacant spectrum. The CR 
intelligently scans the spectrum in its vicinity and search the vacant 
spectrum. The optimization of available spectrum is important research 
challenge in cognitive radio networks (CRNs). In this research work, we have 
optimized the spectrum utility of SUs using Differential Evolution (DE) 
algorithm in order to reduce the interference incurs to primary users (PUs) 
and as well as among the secondary users (SUs). Moreover, the results are 
compared with other evolutionary channel assignment algorithms like Fuzzy 
Logic Ant Colony System (FLACS) and Color Sensitive Graph Coding Method 
(CSGC). It has been observed that the results of proposed algorithms can 
further enhance the spectrum utility in CRNs in comparison to FLACS and 
CSGC. 
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1. Introduction

*Currently the requirement for wireless spectrum
has been increased drastically (FCC, 2013). It is 
predicted that spectrum demand will increases 10 
times between 2015 to 2020. In order to cope with 
this problem of spectrum scarcity, Cognitive Radio 
(CR) is a promising technology (Haykin, 2005). CRNs 
have functions: spectrum sensing; control; sharing 
and spectrum mobility (Akyildiz et al., 2006). This 
paper concentrates on how to optimize available 
spectrum among unlicensed users called SUs which 
is detected unoccupied by licensed users called 
primary users (PUs) in order to avoid interference 
between PUs and SUs, and also to avoid interference  
among SUs. 

2. Literature survey

Excessive efforts of research exist in literature to 
solve the spectrum sharing problem in CRNs. There 
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are so many channel assignment algorithms and 
methods have been proposed on the basis of 
centralized or distributed architecture, overlay or 
underlay techniques of accessing spectrum and 
cooperative or non-cooperative allocation behavior 
of spectrum. These proposed methods include game 
theory (Nie and Comaniciu, 2006), auction and 
pricing mechanism (Kloeck et al., 2005; Huang et al., 
2006), graph coloring (Peng et al., 2006) and local 
bargaining (Cao and Zheng, 2005). The stochastic 
searching methods which have been inspired by 
social behavior of species and natural evolutions are 
referred as evolutionary algorithms (Saxena and 
Kothari, 2016). These algorithms have proved that 
they work more efficiently while dealing with 
discontinuous, noisy and differential problems. 
Evolutionary Computation (EC) applies parallel 
search in search space. EC does not use any 
derivative information for space searching; only 
fitness values from individuals are used for getting 
help in search space (Engelbrecht, 2006). 

In Zhao et al. (2009) Genetic Algorithm (GA) and 
Particle Swarm Optimization (PSO) based spectrum 
assignment algorithms were investigated in order to 
assign spectrum in CRNs. Zhao et al. (2009) claimed 
that PSO algorithm can be used to find an optimal 
solution under the three specific objective functions 
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introduced in Peng et al. (2006). However, the 
performance of these algorithms versus different 
PUs, SUs and channels available are not well 
investigated. In Koroupi et al. (2013), a fuzzy based 
ant colony approach is used to analyze the spectrum 
assignment versus PUs, SUs and available channels. 

The solution represented in Koroupi et al. (2013) 
improves the performance further. Contribution of 
this paper is that the DE based spectrum assignment 
algorithm is proposed which further enhances the 
performance spectrum utility in comparison with 
fuzzy logic inspired ants algorithm by Koroupi et al. 
(2013) and Color Sensitive Graph Coloring (CSGC) 
method by Peng et al. (2006). 

GA has diversity in population but it is slow, on 
the other hand PSO is speedy but it has less diversity. 
DE has both the features; it is speedy as well as 
diversity. DE algorithm has a balance between 
diversity and exploration (Devi et al., 2014; Zhou et 
al., 2011). This paper is organized as follows: in 
section 3 Network model is discussed. Section 4 
proposed DE based Channel Assignment Algorithm is 
discussed. Section 5 presents simulation results and 
discussion. Finally the conclusion is drawn in section 
6. 

3. Network model for spectrum assignment 

Open system model (Peng et al., 2006) is 
considered in this paper. SUs use bands which are 
licensed, provided that there is no interference as 
imposed by PUs. SUs are able to detect PUs by 

accessing a central database. Recently, a report of 
FCC (FCC, 2013) points towards the feasibility to 
allow SUs operations in TV broadcast white spaces in 
time and location. We describe the model by the 
following example. 

Fig. 1 illustrates the example of deployment in 
which an inactive broadcast television, which is a PU 
𝑥, utilizes the spectrum in order to provide 
residential community connections via a wireless 
connection. 

In this example, SUs are marked as 1, 2, 3 and 4. 
PU 𝑥 acquires only 𝑚𝑡ℎ channel with its associated 
protection area of region 𝑑𝑝(𝑥, 𝑝). Any kind of 

radiation from the side of SUs falling in this region 
will interfere the PU. 

Let 𝑛𝑡ℎ SU can adjust its range of interference into 
𝑑𝑆(𝑛, 𝑚) by tuning transmission power on 𝑚𝑡ℎ 
channel in order to avoid interfering with the PU. 
Here, we are assuming that 𝑛𝑡ℎ SU can use the 𝑚𝑡ℎ 
channel as neighbor of PU 𝑥, provided that the 
distance fulfills the following expression (Eq. 1): 

 

𝑑𝑆(𝑛, 𝑚) ≤ 𝐷𝑖𝑠𝑡(𝑛, 𝑥) − 𝑑𝑝(𝑥, 𝑚).                    (1) 

 

In the above expression, the distance between PU 
𝑥 and SU 𝑛 is represented as 𝐷𝑖𝑠𝑡(𝑛, 𝑥). Generally, 
range of interference 𝑑𝑆 is bounded between 
maximum and minimum transmission power which 
is [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥], so 𝑑𝑆 is considered as the 
transmission range of SU. It is assumed that channels 
are orthogonal to each other. 

 

 
Fig. 1: Cognitive radio network model 

 

Effective fairness and utility are key objectives in 
open spectrum system. Above two goals combine to 
form utility functions which can be customized for 
every kind of wireless network applications. Three 
types of utility functions described in Peng et al. 
(2006) are studied and compared for these 
objectives. It is assumed that location of users and 

spectrum is static during channel assignment 
process. 

It is assumed that network model has a fixed 
topology for a sufficient time. Wireless network 
consists of 𝑋 PUs and 𝑁 SUs which compete for 𝑀 
channels available. The main components of this 
network model are defined as follow. 
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3.1. Matrix of channel availability 

𝐿 = [{𝑙𝑛,𝑚} ∈ (0,1)]𝑁×𝑀. If 𝑙𝑛,𝑚 = 1, 𝑚𝑡ℎ channel 

is available for 𝑛𝑡ℎ SU. Otherwise  𝑚𝑡ℎ channel is not 
available for 𝑛𝑡ℎ SU and it is under use of PU. 

3.2. Matrix of channel rewards 

𝐵 = {𝑏𝑛,𝑚}𝑁×𝑀. This represents rewards of 𝑛𝑡ℎ SU 

which occupies 𝑚𝑡ℎ channel. Usually, users are using 
maximum throughput or bandwidth assuming no 
interference from neighbor users. The 𝑛𝑡ℎ SU can get 
the reward 𝑏𝑛,𝑚 = 𝑑𝑆

2(𝑛, 𝑚) which fulfill the criteria 
𝑑𝑚𝑖𝑛 ≤ 𝑑𝑆(𝑛, 𝑚) ≤ 𝑑𝑚𝑎𝑥 (Peng et al., 2006).  

3.3. Interference constraint matrix 

𝐶 = [{𝑐𝑛,𝑘,𝑚} ∈ (0,1)]𝑁×𝑁×𝑀 three dimensional 

matrix represents the interference constraint among 
SUs. If 𝑐𝑛,𝑘,𝑚 = 1 then 𝑛𝑡ℎ and 𝑘𝑡ℎ SUs would 

interfere with each other for obtaining the same 𝑚𝑡ℎ 
available channel. If 𝑐𝑛,𝑘,𝑚 = 0 then 𝑛𝑡ℎ and  𝑘𝑡ℎ SUs 

not interfering with each other for the same 𝑚𝑡ℎ 
channel. 

3.4. Matrix of channel assignment without 
conflict 

𝐴 = [{𝑎𝑛,𝑚} ∈ (0,1)]𝑁×𝑀. If 𝑎𝑛,𝑚 = 1, it means 

that 𝑚𝑡ℎ channel has been already assigned to 𝑛𝑡ℎ SU 
and vice versa. It must meet following constraint of 
interference which is defined by matrix 𝐶 as follows 
(Eq. 2): 

 
𝑎𝑛,𝑚 × 𝑎𝑘,𝑚 = 0 𝑖𝑓 𝑐𝑛,𝑘,𝑚 = 1                    (2) 

 
Eq. 2 represents that if two SUs qualify for the 

same channel then discards one of them. Let 
Λ(L, C)𝑁,𝑀 represent the conflict free channel 
assignment set for 𝑁 SUs, 𝑀 channels and 
interference constraints  𝐶. For a given conflict free 
channel assignment, 𝑛𝑡ℎ user reward is defined 
as𝑟𝑛 = ∑ 𝑎𝑛,𝑚 × 𝑏𝑛,𝑚

𝑀
𝑚=1 . 

We use 𝑅 = {𝑟𝑛 = ∑ 𝑎𝑛,𝑚 × 𝑏𝑛,𝑚}𝑁×1
𝑀
𝑚=1  as a 

reward vector for a given channel assignment that 
each user gets. Objective here is to increase 
spectrum utility which is represented as 𝑈(𝑅). 

By considering the above mentioned model, the 
problem of allocating spectrum is defined by 
optimization problem as follows (Eq. 3): 

 
𝐴∗ = 𝑚𝑎𝑥𝐴∈𝐿,𝐶𝑈(𝑅)                        (3) 

 

In the above expression, 𝐴∗ is conflict free optimal 
matrix of assigning channel. We have considered 
following three objective functions (Peng et al. 
2006): 

3.4.1. Maximum sum reward (MSR) 

Our objective here is to maximize overall 
secondary users rewards irrespective of fairness for 

each SU considering the interference constrain (Eq. 
4). 
 
𝑈(𝑅) = ∑ 𝑟𝑛 𝑁

𝑛=1                       (4) 

3.4.2. Max min reward (MMR) 

Our objective here is to maximize the reward of 
those SUs which got the least reward in wireless 
spectrum. In CRN, some selfish SUs can get the 
maximum spectrum bands so in order to increase 
the reward of those SUs which obtain least reward 
(Eq. 5). 

 
𝑈(𝑅) = 𝑚𝑖𝑛(𝑟𝑛)  ∀(1 ≤ 𝑛 ≤ 𝑁)                      (5) 

3.4.3. Max proportional fair (MPF) 

Our objective here is equality among SUs 
irrespective of reward that they got in order to 
balance the spectrum opportunities among SUs (Eq. 
6). 

 
𝑈(𝑅) = ∑ log(𝑟𝑛)  𝑁

𝑛=1                      (6) 

 
The above fairness function can also be written as 

(Peng et al., 2006): 

3.5. Proposed differential evolution based 
spectrum assignment algorithm 

Number of solutions which are possible inside 
search space are very large, therefore exhaustive 
search techniques (Michalewicz and Fogel, 2013) 
cannot be applied for all states in practical 
applications. Since CRN works in a real time system, 
so to find an optimal channel assignment is essential. 
We have proposed the use of Differential Evolution 
algorithm to get optimal solution (Eq. 7). 
 
𝑈(𝑅) = (∏ (𝑟𝑛 + 10−6)𝑁

𝑛=1 )1/𝑁                    (7) 
 

DE is a population based search algorithm. The 
main difference in reproduction step, new 
population is created using an arithmetic operation 
among randomly selected three individuals 
(parents) of current population. For each parent 

𝑦𝑖(𝑡) create an offspring 𝑦𝑖
/
(𝑡) for 𝑡 generations in 

the following way. Randomly select three parents 
𝑦𝑖1

(𝑡), 𝑦𝑖2
(𝑡) and 𝑦𝑖3

(𝑡) such that 𝑖1 ≠ 𝑖2 ≠ 𝑖3 ≠ 𝑖 and 

𝑖1, 𝑖2, 𝑖3 belongs to population size. Select a random 
number 𝑞 ∈ (1,2,3 … 𝑛𝑥) where 𝑛𝑥 number of 
parameters (genes) of a single chromosome. The 
probability of reproduction represented by 𝑃𝑟 ∈
[0,1]. Then define a threshold value randomly 
between (0, 1). If 𝑃𝑟 is less than this threshold value, 
or if 𝑗 = 𝑞, let (Eq. 8) 

 

𝑦𝑖𝑗
/ (𝑡) = 𝑦𝑖3𝑗(𝑡) + 𝛽 {𝑦𝑖1𝑗

(𝑡) − 𝑦𝑖2𝑗(𝑡)},                   (8) 

 

otherwise, let (Eq. 9) 
 

𝑦𝑖𝑗
/ (𝑡) = 𝑦𝑖𝑗(𝑡).                      (9) 
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In the above expression, 𝛽 ∈ (0, ∞) is an 

amplifying factor, 𝑦𝑖𝑗
/

(𝑡) and 𝑦𝑖𝑗(𝑡) represents 

respectively offspring and parent of 𝑗𝑡ℎ parameter. In 
DE even when 𝑃𝑟 = 0 at least one parameter differs 
from in offspring because 𝑗 = 𝑞. In DE above 
reproduction process require that population size>
3. 

3.5.1. Encoding mechanism 

Now discuss the encoding of DE algorithm for 
spectrum allocation problem. Each chromosome 
represents a solution for SU and its fitness value 
related to utility functions defined above. We 
consider utility functions as objective functions. DE 
consists of chromosomes. A chromosome further 
divided into parameters also called genes 
represented in binary form. For the problem of 𝑀 
channels and 𝑁 SUs, SUs are represented by 𝑁 
chromosomes, and channels are represented by 𝑀 
genes in a chromosome as shown in Fig. 2. The 
allocated channels for a SU are represented by 
binary bits. If bit value is one then corresponding 
channels is allocated to SU and vice versa. 

 

 
(SU) 

 

1 2 3 4 . . . . . M 

  (Channels) 

 
 

Chromosome(SU) 
  (Genes) 

1 0 1 0 . . . .  1 

 (M Channels) = (M Genes) 

 
 

SU1 
  (M Genes) 

1 0 1 0 . . . .  1 

 

 
 

SU2 
  (M Genes) 

1 0 1 1 . . . .  0 

 

. 

. 
 

SUN 
  (M Genes) 

1 0 1 0 . . . .  1 

 (M Channels) = (M Genes) 

Fig. 2: DE chromosome mapping for channels allocation 
 

Population consists of SUs. Initialized the 
population and conflict free channels assignment 
matrix 𝐴 is constructed according to criteria defined 
in Eqs. 1 and 2. If the two SUs occupy the same 
channel as shown in Fig. 3, then set one of SUs 
channel bit value to zero to avoid conflict. 

Then offspring is created using Eqs 8 and 9. After 
this step, fitness of initial population and offspring 

population is calculated using objective functions 
defined in Eqs 5, 6, and 7. If the fitness of offspring 
better than the parent then it is replaced with it, 
otherwise parent is carried over to the new 
population. The iteration process continued up to 
pre-defined number of cycles. 

 
Channels 1 2 3 4 5 6 7 8 9 10 

SU 1 
1 
 
 

0 
 
 

1 
 
 

0 
 
 

0 
 
 

0 
 
 

1 
 
 

1 
 
 

1 
 
 

0 
 
 

SU 2 1 0 0 0 1 1 1 1 1 0 

Fig. 3: Infeasible allocation of SU1 and SU2 

4. Results and discussions 

We are considering a wireless network of 10 × 10 
region, simulated 𝑋 number of PUs by placing them 
randomly in this area. Pus of this class can serve as 
base stations for different kind of wireless networks 
operator. Then, we deploy 𝑁 SUs randomly in this 
network. By following the method of Peng et al. 
(2006), Koroupi et al. (2013), SUs are assumed to be 
identical. We take different ranges for the PUs, SUs 
and available channels. The parameters values 
represented in Table 1 are considered to compare 
results with results of papers (Peng et al., 2006; 
Koroupi et al., 2013). Spectrum of PUs and SUs are 
allocated randomly between values 0 to 10. 
Maximum ten numbers of channels (𝐶𝑚𝑎𝑥) can be 
assigned to a SU.  

 
Table 1: Parameter values 

Parameter Values 
Cmax 10 

dP 2 
dmin 1 
dmin 4 

Pr 0.5 
β 0.5 

4.1. Impact by changing the number of channels 

Fig. 4a quantifies the performance of proposed 
algorithms for MSR as the number of channels 
changes for 𝑁 = 10, and 𝑋 = 20 We observed that in 
general all three utilities increases as the number of 
channels increases. In comparison with FLACS, DE 
and GA perform better up to 𝑀 = 5 𝑡𝑜 17 and 𝑀 =
25 𝑡𝑜 30 channels DE slightly better for 𝑀 = 30 
channels. Fig. 4b, for MMR, DE outperform than 
FLACS for total range of channels, GA perform better 
that FLACS-SA in the range 𝑀 = 25 𝑡𝑜 30. Fig. 4c, for 
MPF, DE outperform for all range 𝑀 = 5 to 𝑀 = 30 
channels.  

4.2. Impact by varying number of SUs 

Next analyze the performance of all proposed 
algorithms with Koroupi et al. (2013), increasing 
number of secondary users clearly creates additional 
interference constraints. Set 𝑀 = 10, 𝑋 = 20. Figs. 
5a, 5b, and 5c show each one three utilities degrade 
as the number of SUs increases. Fig. 5a with MSR 
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utility, DE-SA perform better than FLACS-SA, BCO 
performance good for initial SUs 𝑁 = 5 𝑡𝑜 7. Fig. 5b 
for MMR, DE perform better than FLACS, GA also 
show better performance than FLACS for 𝑀 =
5 𝑡𝑜 10. Fig. 5c for MPF, DE performs good for whole 
range of increasing SUs.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4: Number of channels versus (a) MSR, (b) MMR, 
(c) MPF 

4.3. Impact by varying number of PUs 

Similarly, increasing the number of primary users 
could lessen all three utilities. Fig. 6a for MSR, 
proposed algorithm not performs well in this case. 
Fig. 6b represent MMR versus Number of primary 
users, DE perform better than FLACS for 𝑋 = 5 𝑡𝑜 25, 
for 𝑋 = 25 𝑡𝑜 50 DE and FLACS both perform 
approximately equally well. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5: Number of SUs versus (a) MSR, (b) MMR,(c) 
(MPF) 

 
BCO, GA perform well for 𝑋 = 1 𝑡𝑜 10 and 

perform equal to FLACS for 𝑋 = 50. Fig. 6c represent 
MPF utility versus 𝑋, DE perform better than FLACS 
for 𝑋 = 30 𝑡𝑜 50, DE and FLACS perform equally well 
for 𝑋 = 30 𝑡𝑜 50. BCO, GA performance equal to 
FLACS for 𝑋 = 5 primary users only. 

4.4. Comparison among three utilities 

Fig. 7a represents comparison among all three 
utilities versus number of increasing channels. Fig. 
7b represents comparison among all three utilities 
versus number of increasing SUs. Fig. 7c represents 

5 10 15 20 25 30
0

20

40

60

80

100

120

No. of channel

M
S

R

MSR Vs No. of channel

 

 

\with CSGC

\with FLACS-SAA

\with GA

\with BCO

\with DE

5 10 15 20 25 30
0

20

40

60

80

100

120

No. of channel

M
M

R

MMR Vs No. of channel

 

 

\with CSGC

\with FLACS-SAA

\with GA

\with BCO

\with DE

5 10 15 20 25 30
0

20

40

60

80

100

120

No. of channel

M
P

F

MPF Vs No. of channel

 

 

\with CSGC

\with FLACS-SAA

\with GA

\with BCO

\with DE

5 10 15 20
15

20

25

30

35

40

45

50

No. of su

M
S

R

MSR Vs No. of su

 

 

\with CSGC

\with FLACS-SAA

\with GA

\with BCO

\with DE

5 10 15 20
0

5

10

15

20

25

30

No. of su

M
M

R

MMR Vs No. of su

 

 

\with CSGC

\with FLACS-SAA

\with GA

\with BCO

\with DE

5 10 15 20
0

5

10

15

20

25

30

35

40

45

No. of su

M
P

F

MPF Vs No. of su

 

 

\with CSGC

\with FLACS-SAA

\with GA

\with BCO

\with DE



Latif et al/ International Journal of Advanced and Applied Sciences, 4(8) 2017, Pages: 160-166 

165 
 

comparison among all three utilities versus number 
of increasing PUs. MSR gives maximum utility in all 
three utilities, MPF give second best utility and MMR 
gives the least utility as it maximize the utility of min 
utilized user. 

 
(a) 

 
(b) 

 
(c) 

Fig. 6: Number of PUs versus (a) MSR, (b) MMR, (c) 
(MPF) 

  
Table 2 represents average reward of MSR, MMR 

and MPF with increasing number of iterations for 
𝑁 = 20, 𝑀 = 20 to compare it with results of 
Koroupi et al. (2013). DE performs better than 
FLACS for all three utilities.  

5. Conclusion 

The cognitive radio communication is a 
promising technology to deal with spectrum scarcity 
problem. In CRNs, the main objective is to increase 
the spectrum utility of SUs considering the 
interference avoidance incurs to primary users. In 

this research work, we have observed performance 
of proposed algorithm and its impact on a variety of 
factors such as increasing number of PUs, SUs, 
available channels, iterations and primary user 
protection area. The simulation results show that the 
proposed algorithm can enhance the performance of 
spectrum assignment of CRNs in comparison with 
the other studied algorithms. So, differential 
evolution based spectrum assignment model can be 
used to optimize wireless spectrum and also to avoid 
interference with primary users as well as among 
secondary users in cognitive radio networks. In 
future, we enhance this spectrum sharing problem to 
heterogeneous networks. 

 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 7: Utility functions versus increasing (a) number of 
channels (b) SUs, (c) Pus 
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Table 2: Number of Iterations of evolutionary algorithms 
in comparison with utility functions 

Iterations 
(Generation) 

Algorithm 
Average Reward(N= 20, M= 20) 

MSR MMR MPF 

10 

GA-SAA 1170.9525 2.3642 62.4950 
QGA-SAA 1206.1508 9.5613 37.0068 
PSO-SAA 1204.7035 8.3244 13.7659 
ACS-SAA 1206.8396 9.3964 43.6243 
FLACS-

SAA 
1211.4250 11.6402 58.7432 

CSGC 1206.0437 2.7769 60.1252 
DE 1244.1443 73.0000 258.2710 

50 

GA-SAA 1229.1568 7. 2553 96. 2020 
QGA-SAA 1237.3000 39.5744 87.5857 
PSO-SAA 1238.1758 28.0520 82.4346 
ACS-SAA 1241.7378 42.7491 98.8839 
FLACS-

SAA 
1252.4725 50.8461 103.6923 

CSGC 1206.0437 2.7769 60.1252 
DE 1332.7757 72.5000 258.2209 

300 

GA-SAA 1238.9552 12.3750 116.7429 

QGA-SAA 1238.9561 
56. 

2500 
118.0215 

PSO-SAA 1240.1890 50.9594 120.5298 
ACS-SAA 1241.7826 65.9205 137.3048 
FLACS-

SAA 
1248.9041 71.0437 145.9418 

CSGC 1206.0437 2.7769 60.1252 
DE 1512.3784 71.5000 258.2163 
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